SMILOW DENTISTRY

Smilow Dentistry Database
Aaron Post, Noah Perkins, Keyang Zhang, and Saeed Alneyadi
CSE 3241
Professor Zina Pichkar

July 29, 2022

Table of Contents

Team Description, IntroducCtion.......... ...t e, 3
PrOJeCt SUMMATY . ..o ett e ettt et e e e et et e e e e 4
T2 2) SRS 5
Relational Schema Documentation................oouiiiiiiii e, 6-7
Complete Relational Schema.............coooiiiiiii e 8-10
Relational Schema Diagram...........c..oiiiiiiiiii e 10-11
Relational Algebra..... ..o 12-14
NOTMATIZATION. ..ottt e e e e e e e e 14
User Manual: Table DesCriptions.oiuiiiutiie i i ere e e, 15-26
User Manual: Catalog of SQL QUETICS.euiiniiitett et eeea e 27-33
User Manual: Insert and Delete SQL Examples..........cooviiiiiiiiiiiiiiiiiiiiiieiieeen 34
User Manual: TWO INA@XES.ouuinitit i e 34-35
User Manual: TWO VIEWS. ...ttt e e e, 35
User Manual: TWo Transactions.ouueiuuitiitti e 36
Team Member CONtrIDULIONS.uutn ittt 37
Project ReTICCHON. e e 37
Feedback and Revision Process.........o.vivuiiiiiiiii e 37-38
Project CheCKPOINTS. ...ttt ettt e e e e et et e et et e e e e n e 39

Testing Queries and SQL.........oitiiii e 40

Section 1 - Database Description

Team Description

Our team consists of Aaron Post, Keyang Zhang, Noah Perkins, and Saeed Alneyadi. Over the
course of this project, we communicated via group text on Discord. There were some timezone
differences between members of our group (as well as different work schedules), but we
accounted for these concerns by regularly messaging each other to make sure we were on track
to complete the necessary work.

Introduction

Almost every business could benefit from a database; this includes the obvious “data giants” like
Google and Facebook, but also extends to many small businesses. Small businesses can benefit
from a database because it provides efficient means to store, access, and manipulate customer
records. According to business.com, popular database software used for business includes
Informatica, Azure Data Catalog, and more. In the case of a business such as Smilow Dentistry,
however, a medical-oriented DBMS would likely be used instead such as Denticon, Curve
Dental, etc. Ideally, though, a custom database solution would be created for every business to
accommodate their specific needs best through multiple interviews. To emulate this process, we
interviewed a family member with decades of experience in the administration side of the
medical industry. He explained how the registration, scheduling, and billing processes work.
Firstly, a customer calls the dentist's office to schedule an appointment. If it is their first
appointment, then they must give extensive information about their demographics. This includes
(but is not limited to) their insurance, name, date of birth, social security number, address, phone
number, place of work, medical history, type of insurance, and whether or not their insurance is
within the network. Many offices have deals with specific insurance companies which can offer
additional benefits to patients within the network. In other words, their financial support may be
limited if a customer’s insurance is out of the network. Once all of this information is
communicated, their information is stored in the database. They can now schedule an
appointment over the phone, specifying a time and date that works for the client and dentist. The
first appointment will be the longest, and any follow-ups should be shorter unless there are
special conditions such as procedures or x-rays. The client will then attend their appointment,
and the Dentist will record what services they performed (procedures etc) and complete the
billing form for the insurance company. The bill is then sent to the client’s insurance company
for review and to pay the dentist according to the insurance policies. Finally, the patient receives
an EOB (explanation of insurance benefits and what needs to be paid by them) and their invoice.
As for employees, each employee at the dentist's office has several attributes that will need to be
noted. This includes their name, date of birth, address, social security number, schooling (level
and where), certifications and dates of expiration, years of experience, previous places of work,
special skills/talents/training, accommodations if they are disabled, and which
location/department they will work in.

Project Summary

Through this project, we will create a relational database for our client Smilow Dentistry.
It will be fully functional and have everything the client should expect including registration
scheduling and billing. We will complete all necessary, industry-standard steps, such as creating
an E(ERD), relational schema, queries using relational algebra and SQL, populating data records,
and documenting everything in the form of a user manual.

Database Additional Features
a.) Save a preferred day of the week and time for appointments
- Two more attributes on the patient: Preferred Day, Preferred Time
b.) Employee Hire Date Anniversary Parties
- Four more attributes on an employee: Hire Date, Favorite Food, Favorite Media
Name(Interstellar), Favorite Media Type(Movie)

Requirements & Assumptions

- Assuming that patient insurance types are different than the accepted type, so a patient
could have insurance that is not accepted.

- Offices can take multiple appointments, and each appointment belongs to this exact office
and each appointment must be taken by the office.

- One appointment generates one billing record, and each billing record must be generated
only by one appointment.

- One appointment must have and can contain multiple dental procedures, and each dental
procedure is contained in one appointment.

- An insurance plan can pay for multiple dental procedures, and each dental procedure is
paid for by one insurance plan.

- Offices can have multiple employees, and each employee belongs to this exact office.

- One patient can have one insurance plan, and each insurance plan can be selected by
multiple patients.

- One insurance plan can have multiple accepted insurance policy types, and each accepted
insurance policy type is included in one insurance plan.

- One patient can have multiple appointments, and each appointment belongs to the patient
that makes it, and each appointment must have its owner.

- Each patient can make multiple payments, and each payment belongs to one patient.

- Each patient can have multiple kinds of allergies, and one allergy can be possessed by
multiple patients.

- Each patient can take multiple medications, and each medication can be taken by multiple
patients.

- Each patient can have multiple medical conditions, and each medical condition can
belong to multiple patients.

(E)ERD (File also included for better visibility, “EERD.jpg”)

CompanylD

Insurance
Company

|

Person

Medical

Condition

Condition Name

w

Accepied
Insurance

Located At

Employee

Appointment

BadgeMum

Conducts

Procedure

ProcedurePerformed M

{nerat\es

W_insuranc%djus:ed[}o
N A "

Invoice

Amount

N 1
——<Alfalched To

InvoicelD

Paid By
Datelssued

AmouniCovered
1

Covers

Requires

- ; Non-medical
Medical Employes ‘ Employee ‘
v <
N

License

LicenseName

Relational Schema Documentation
We used the following six-step algorithm to create our relational schema:

I. Handle Regular Entity Types
We first mapped every regular entity into a relation, adding all simple attributes as attributes of
the relation. The primary key of each entity also becomes the primary key of the relation.

Example Regular Entity: Person
Person(ID, Fname, Name, Person_Type)
e ID is the Primary Key on the ERD, so
it becomes the Primary Key of the
relation.

—_— Person

e Fname, Lname, and Person_Type are
all simple attributes, so they are added
as attributes of the relation.

'
II. Handle Weak Entity Types

There were no weak entities in our ERD that we had to map into relations. If we did have one,
we would have created a new relation and added all of its simple attributes just like a regular
entity, and then add the primary key of its owner as a foreign key to the relation.

III. Handle Binary N:1 Relationships

We then mapped all N:1 Relationships by using the Foreign Key approach, adding the key
attribute from the 1 side as a foreign key to the relation on the N side. There is an example
below.

M:1 Relationship: Patient Has Emergency Contact

Address N Lives At M
EmergencyContact(PersonlD, Relation))

e Patient is a subclass of Person, so it

includes Person’s Primary Key “ID” as a
Foreign Key called “PersonID”
Patient(PersonID, EID, IPID, LastXRayDate, |
Gender, Race, Age, HIPAASigned, PreferredTime,
PreferredDay) rype
e Also includes Foreign Key “PersonID”

Emergency
Contact

HIPAASIgned

because Patient is also a subclass of Person
e Includes Key of Emergency Contact
“PersonlD” as a foreign key because of N:1
Relation
e Includes IPID because of another
relationship.

IV. Binary 1:1 Relationship
We then mapped all 1:1 relationships, using the foreign key approach. We accomplished this by
adding the key attribute from the partial participation side as a foreign key to the fully
participating side. We chose to use the foreign key approach for every 1:1 relationship because it
was easier to read and communicate effectively as a team. There is an example below.

Payment_Type
5t

1:1 Relationship: PaymentMethod Fulfills Payment

b S |

Patient

Payment(PID, PayeelD, DatePaid) —
e Includes Foreign Key “PayeelD” to Key - EQU
“PersonID” in Patient because of N:1 e
Relationship
e Primary Key is “PID” - @ E

PaymentMethod(PMID, PID, Payment Type)
e Includes Foreign Key “PID” to Key “PID” in
Payment because of 1:1 Relationship
e Primary Key is “PMID”

V. Binary M:N Relationship
We then mapped all M:N relationships which were the most complex to deal with. After
mapping both entities as regular entity types, we also created “Join” relations including Primary
Keys from both entities as Foreign Keys in the new relation, as well as any attributes that were
attached to that relationship. There is an example below.

it

Procedure

Regular Entities:

__,/\\uujy aw_otansu
M

Medical

AcceptedInsurance(IPID, Name, Type, Rate)

e Primary Key is “IPID”
Procedure(ProcedurelD, ProcedurePerformed)

e Primary Key is “ProcedurelD”

Join:
Procedure-Accepted-Insurance-Join(ProcedurelD,
IPID, AmountPaid, PerUnitCharge)

e Includes Foreign Key “ProcedureID” to
Primary Key “ProcedurelD” in Procedure
Includes Foreign Key “IPID” to Primary
Key “IPID” in AcceptedInsurance

VI. Multivalued Attributes

Condition

Condition Name

1

R
Name

Provide

N

@

Accepted

Insur

ance

InsurancelD

8

N
Has

%
N

grocedurelD

4

Generates

ProcedurePerformed

~ ! M
N Paid By

Covers

I
(Amount

InvoicelD

Datelssued

We have no multivalued attributes, so we do not need to map them. If we had multivalued
attributes, we would create a new relation and employ the foreign key approach again.

Complete Relational Schema
Person(ID, Fname, Name, Person_Type)

Primary Key: “ID”
Employee(PersonlD, OID, Employee Type, BadgeNum, College, Degree, Salary,
FavMediaName, FavMediaType, FavFood, HireDate)

Foreign Key: “PersonID” to Primary Key “ID” in Person

Foreign Key: “OID” to Primary Key “OID” in Office
MedicalEmployee(PersonlD, Training, Position)

Foreign Key: “PersonID” to Key “PersonID” in Employee
NonMedicalEmployee(PersonlD, Type)

Foreign Key: “PersonID” to Key “PersonID” in Employee
Patient(PersonID, EID, IPID, LastXRayDate, Gender, Race, Age, HIPAASigned, PreferredTime,
PreferredDay)

Foreign Key: “PersonID” to Primary Key “ID” in Person

Foreign Key: “EID” to Key “PersonID” in EmergencyContact

Foreign Key: “IPID” to Primary Key “IPID” in AcceptedInsurance
EmergencyContact(PersonID,Relation)

Foreign Key: “PersonID” to Primary Key “ID” in Person
Address(StreetAddress, City, State, Zip, Country)

Primary Key: “StreetAddress”
Office(OID, StreetAddress,OfficeName)

Primary Key: “OID”

Foreign Key. “StreetAddress” to Primary Key “StreetAddress” in Address
License(LicenselD, LicenseName)

Primary Key: “LicenselD”
Payment(PID, PayeelD, DatePaid)

Primary Key: “PID”

Foreign Key: “PayeelD” to Key “PersonlD” in Patient
PaymentMethod(PMID, PID, Payment Type)

Primary Key: “PMID”

Foreign Key: “PID” to Primary Key “PID” in Payment
Cash(PMID, CashAmount)

Foreign Key: “PMID” to Primary Key “PMID " in PaymentMethod
Check(PMID, CheckAmount, CheckDate, CheckRecipient)

Foreign Key: “PMID” to Primary Key “PMID " in PaymentMethod
CreditCard(PMID, CVYV, ExpireDate, CardNumber, CardHolderName)

Foreign Key: “PMID” to Primary Key “PMID " in PaymentMethod
Allergy(Allergy Name)

Primary Key: “Allergy Name”
Medication(Medication_Name)

Primary Key: “Medication_Name
MedicalCondition(Condition_Name)

Primary Key: “Condition_Name”
AcceptedInsurance(IPID, Name, Type, Rate)

Primary Key: “IPID”
Invoice(lID, PID, ProfessionalsID, Datelssued, Amount)

Primary Key: “I1ID”

Foreign Key: “PID” to Primary Key “PID” in Payment

Foreign Key: “ProfessionalsID” to “PersonlD” in MedicalProfessional
Appointment(AppointmentID, PatientID, IID, Date, Cancelled)

Primary Key: “AppointmentID”

Foreign Key: “PatientID” to Key “PersonlD” in Patient

Foreign Key: “IID” to Primary Key “IID” in Invoice
Procedure(ProcedurelD, ProcedurePerformed)

Primary Key: “ProcedurelD”
MedicalEmployee-License-Join(PersonlD, LicenselD, Issue date)

Foreign Key: “PersonID” to Key “PersonID” in MedicalEmployee

Foreign Key: “LicenselD” to Primary Key “LicenselD” in License
Patient-Allergy-Join(PatientID, AID)

Foreign Key: “PatientID” to Key “PersonlD” in Patient

Foreign Key: “AID” to Primary Key “Allergy_Name” in Allergy
Patient-Medications-Join(PatientID, Medication_Name, Brand)

Foreign Key: “PatientID” to Key “PersonlD” in Patient

Foreign Key: “Medication_Name” to Primary Key “Medication_Name” in Medication
Patient-MedicalConditions-Join(PatientID, Condition Name)

Foreign Key: “PatientID” to Key “PersonID” in Patient

Foreign Key: “Condition_Name” to Primary Key “Condition_Name” in
MedicalCondition
Person-Address-Join(PersonlD, StreetAddress, Address_Type)

Foreign Key: “PersonID” to Primary Key “ID” in Person

Foreign Key: “StreetAddress” to Primary Key “StreetAddress” in Address
Procedure-MedicalProfessional-Join(ProcedurelD, ProfessionalsID,Start Time)

Foreign Key: “ProcedurelD” to Primary Key “ProcedurelD” in Procedure

Foreign Key: “ProfessionalsID” to Key “PersonID” in MedicalEmployee
Procedure-Accepted-Insurance-Join(ProcedurelD, IPID, AmountPaid, PerUnitCharge)

Foreign Key: “ProcedurelD” to Primary Key “ProcedurelD” in Procedure
Foreign Key: “IPID” to Primary Key “IPID” in AcceptedInsurance
Procedure-Appointment-Join(ProcedurelD, AppointmentID, Procedure Amount)

Foreign Key: “ProcedurelD” to Primary Key “ProcedurelD” in Procedure
Foreign Key: “AppointmentID” to Primary Key “AppointmentID” in Appointment

10

Employee-Appointment-Join(EmployeelD, AppointmentID, Start Time)
Foreign Key: “EmployeelD” to Key “PersonID” in Employee

Foreign Key: “AppointmentID” to Primary Key “AppointmentID” in Appointment
Invoice-AcceptedInsurance-Join(1ID, IPID, AmountCovered)
Foreign Key: “IID” to Primary Key “IID” in Invoice

Foreign Key: “IPID” to Primary Key “IPID” in AcceptedInsurance
Procedure-Invoice-Join(ProcedurelD, IID)

Foreign Key: “ProcedurelD” to Primary Key “ProcedurelD” in Procedure

Foreign Key: “IID” to Primary Key “IID” in Invoice

Relational Diagram (File also included for better visibility, “RelationalDiagram.jpg”)

PERSON

1D | Fname | Lname | Person_Type ‘

=]

PATIENT

PersoniD | LastXRayDate \G‘ender Race

| Age | HIPAASigned | PhoneNum | EID | IPID PreferredTime | PreferredDay
i ————)

IT

EMERGENCY CONTACT

PersonlD | Relation ‘

|

EMPLOYEE

| PersonlD ‘ Salary |Degree ‘Col\ege|BadgeNum Employes_type ‘ oD |BaugeNum ‘FavMediaName FavMediaType ‘FevFood| HireDate
B

MEDICAL EMPLOYEE

| FersonlD | Training ‘ Fosition
Tt
NON-MEDICAL EMPLOYEE
| PersoniD | Type ‘
LICENSE
| LicenselD | LicenseName ‘

MEDICALEMPLOYEE-LICENSE-JOIN

| LicenselD | PemsoniD | lIssue_date |
ADDRESS
| StrestAddress | City | Stats | Zip ‘Cnuntry ‘

PERSON-ADDRESS-JOIN

[PersoniD | Siesiaddrsss | Address Typs |
|
OFFICE

m| OfficeName | StreetAddress |

PAYMENT

PID | DatePaid PayeslD

PAYMENTMETHOD
PMID | Payment_Type

CREDITCARD
CardNumber | ©W _[ExpireDate | CardHolderName | PMID |

CASH

‘ CashAmount | PMID |
CHECK [

[CheckAmount [checkDate [checkRecipient | PMID |
ALLERGY

Allergy Name

PATIENT-ALLERGY-JOIN
PatientlD [AID

MEDICATION

Medication Name

PATIENT-MEDICATION-JOIN
PatientiD | Medication Name Brand

MEDICAL CONDITION

Condition Mame

PATIENT-MEDICALCONDITION-JOIN

‘ EatientiD Condition Name |
ACCEPTEDINSURANCE
‘ IPID. ‘ Name ‘ Type | Rate |

T A

APPOINTMENT

| AppointmentlD [Date [Cancelled | PatientiD | 1D !
I

EMPLOYEE-APPOINTMENT-JOIN
EmployeelD [AppointmentiD [Start_Time |

PROCEDURE
‘ ProcedurelD ‘PmcedureF‘eﬁnrmeﬂ

=1

PROCEDURE CHARGE PER INSURANCE (PROCEDURE-ACCEPTEDIN SURANCE-JOIN)
‘ ProcedurelD ‘ PerUnitCharge ‘ AmountPaid IPID ‘
| [

APPOINTMENT CONTAINS PROCEDURE (PROCEDURE-APPOINTMENT-JOIN)

ProcedurelD [Procedure_Amount ‘ AppointmentiD |
[
INVOICE

‘ jiIo} ‘ Datelssued ‘ Amount ‘ PID | ProfessionalsiD
|

— 1

INVOICE COST WITH INSURANCE (INVOICE-ACCEPTEDIN SURANCE-JOIN)

‘ D ‘ AmountCovered | IFID
I

PROCEDURE-INVOICE-JOIN

11

12
Relational Algebra

Simple Queries

SQ1P1<Personx , Patien
Person.ID = Patient.PersonlD
SQ1P2<SQ1P1x .
SQ1P1.PersonlD = Patient.PersonlD
SQ1P3<SQ1P2x Medicatio

SQlPZ.MedicationNam = Medication.Medication_Name

Qng(_aname, Lname, SQ1P2.Medication_Name, Brand(Sleg)
This relational algebra shows each patient's info is listed with their medications. This consists of
three JOINS between four relations and SELECT operation.

Patient_Medication_Join

Q2P1 S e (AcceptedInsurance)

Q2P2<Patientd

Patient.IPID = SQ2P1.IPID AND SQ2P1.Name = "Omega"SQZP 1
This relational algebra represents patients with insurance from Delta Dental. It consists of one
SELECT and one JOIN between two relations.

Q3Pl<Appointment
SQ3P2<SQ1P 1
SQ3P3<SQ3P2x

Procedure_Appointment_join
Appointment.AppointmentID = Procedure_Appointment_Join.AppointmentID -App _]

Patient_Medication_Join
SQ3P1.Procedureld = Procedure.Procedurel D - J

Procedure_MedicalEmployee_]oin|
SQ3P2.ProcedurelD = Procedure_MedicalEmployee_Join.ProcedurelD - ptoy _]

MedicalEmployee

SQ3P4<SQ3P3x
SQ3P5<SQ3P4x Person|

SQ3P3.ProfessionalsID = MedicalEmployee.PersonlD

SQ3P4.PersonlD = Person.ID
3P6<0 g1 SQ3P5
Q ProcedurePerformed, Date((Q))

This relational algebra gives doctor Smilow performed procedures list each with their dates. This
contains one SELECT and five JOINS between six relations.

Lname = "Smilow

; Patien
Patient.PersonID = Person.ID

:) Appointmen
SQ5P1.PersonlD = Appointment.PatientID

: Invoice
SQ5P2.11D = Invoice.lID

(SQ5P3))

T
ID, Fname, Lname, Datelssued, Amount(Datelssued BETWEEN '2021/01/01' AND '2021/12/31

This relational algebra shows a list of patient contact information with past due invoices. Past
due invoices are the ones that are defined as over 30 days old with a balance over $10. This
contains one SELECT, one PROJECT, and three JOINS between four relations.

13
MedicalEmployee

SQ6P1<Personx

MedicalEmployee.PersonlD = Person.ID AND MedicalEmployee.position = 'Dentist

P2<5SQ6P1x Pr re_MedicalE J
SQ6 2 SQ6 SQ6P1.PersonlD = Procedure_MedicalEmployee_Join.professionalsid ocedure_Medical mployeeJOl

SQ6P3(_SQ 6P2 MSQ6P2.Procedu‘reID = Procedure.ProcedurelDPTOC@dur €
SQ6P3<T

COUNT Procedure.ProcedurelD (SQ 6P 3)
Q 6P4(_0-Fname, Lname (T[Number <5 (SQ 6P 3))

This relational algebra presents the patients who lead the most revenue in the past year. This
contains one SELECT, one PROJECT three JOINS between four relations.

Q7P1<Appointment> Procedure_Appointment_joir

Appointment.AppointmentID = Procedure_Appointment_oin.AppointmentID
SQ7P2<Procedurex SQ7P1
Q SQ7P1.ProcedurelD = Procedure.ProcedurelD Q

SQ7P3<SQ7P2~ , Invoice
SQ7P2.11D = Invoice.lID
Q7P4<o

SQ7P3)

ProcedurelD, ProcedurePerformed, MAX(Amount)(
This relational algebra shows doctors list who performed less than five procedures this year. This
contains one SELECT and three JOINS between four relations.

8P1<Paymentx
Q y Payment.PID = PaymentMethod.P1D

SQ8P2(_SQ8P1 D<]SQ8P1.P1D = Invoice.PIDInvOice
Q8P3«

(SQ8P2)

Payment_T eF COUNT distinct PID, SUM Amount
This relational algebra represents procedures with the highest pay, their prices, and the total
number of them performed. It contains one SELECT and two JOINS between three relations.

Q9P1<Patient

Acceptedinsurance

Patient.IPID = AcceptedInsurance.lPID

(_SQ9P1.NameFCOUNT SQ9P1.IPID (SQ9P1)
(5Q9P2)

<_SQQP1.Na7neFC0UNT Number
This relational algebra finds the patients' most popular insurance plan name. It contains two
functions and one JOINS between two relations.

Extra Queries

EXQ1 < Patient XAppointment
EXQ1l « EXQ1 ™ Invoice

Cancelled=False
EXQ1 < T

AVERAGE Amount(EXQ 1)
This relational algebra represents the patient info with their uncanceled appointments, and the
average amount paid for each. This consists of one cross product, one JOIN, and one function.

EXQ2 < Patient
EXQ2 « EXQ2 x
EXQ2«

Pateint_Allergy_Join

Patient.PersonlD = Patient_Allergy_Join.PersonlD

Aller
Allergy.allergy_name = Allergy.allergy_name 9

(EXQ2)

This relational algebra shows the count of allergies type each patient has. This consists of two
JOINs and one function.

r
Allergy.allergy_name COUNT Distinct PersonlD

EXQ3T

(Invoice)

Datelssued > 2022/01/01 AND Datelssued < 2022/12/31
EXQ3<T EXQ3
Q SUM Amount(Q)

This relational algebra gives the total payments in the past year (2021). It consists of one
PROJECT and one function.

Normalization

Our relational schema is already normalized to BCNF. We know this because it is INF since
every domain value in our schema is atomic. It is 2NF because the schema is in INF, and every
attribute that isn’t the key is fully dependent on the key. It is also in 3NF because it is in 3NF,
and all non-key attributes are non-transitively dependent on the key. Finally, it is in BCNF

14

because it is in 3NF, and all determinants are candidate keys. We intentionally built the relational

schema in this fashion to reduce normalization work later on.

15

Section 2 - User Manual

Purpose: This table holds all accepted dental insurances

SQL Approved Data Types: INT, VARCHAR, CHAR

Purpose: This table holds all addresses.
Fields: StreetAddress, City, State, Zip, Country.

SQL Approved Data Types: VARCHAR, CHAR, INT

Purpose: This table holds all the appointments made.
Fields: AppointmentID, Date, Cancelled, PatientID, IID

Table Description

IPID |Name | Type Rate AcceptedInsurance

1 Alpha Dental 400

2 lot Dental 500 . :

AR Dental = with different rates.

a enta R

4 Omega Dental s00 Fields: IPID, Name, Type, Rate

5 Epsilon Dental 400 Constraints:

6 Beta Dental so00 IPID: PRIMARY KEY

8 Pi Dental 500 .

: Foreign Key: N/A
9 Sigma Dental 100
10 Dalle Dental 900

StreetAddress |City State Zip Country Address
8080 Nothing Ln Columbus OH 44444 United States
8081 Nothing Ln Columbus OH 44444 United States
8082 Nothing Ln Columbus OH 44444 United States
8083 Nothing Ln Columbus OH 44444 United States . .
8084 Nothing Ln Columbus OH 44444 United States COHStralnts'
8085 Nothing Ln Columbus OH 44444 United States StreetAddress: PRIMARY KEY
8086 Nothing Ln Columbus OH 44444 United States o .
8087 Nothing Ln Columbus OH 44444 United States Prlmary Key‘ StreetAddreSS
8088 Nothing Ln Columbus OH 44444 United States Foreign Key: N/A
8089 Nothing Ln Columbus OH 44444 United States
1 N Street Buffalo NY 12345 United States
2 N Street Buffalo NY 12345 United States
3 N Street Buffalo NY 12345 United States
4 N Street Buffalo NY 12345 United States
5 N Street Buffalo NY 12345 United States
6 N Street Buffalo NY 12345 United States
7 N Street Buffalo NY 12345 United States
8 N Street Buffalo NY 12345 United States
9 N Street Buffalo NY 12345 United States
10 N Street Buffalo NY 12345 United States
AppointmentlD |Date_ Cancelled PatientlD IID Appointment
1 714122 1 2 1
2 715122 1 3 2
3 7/6/22 1 4 3
4 717122 1 5 4 .
¥ s ; 5 Constraints:
6 719122 0 2 6 AppointmentID: PRIMARY KEY
i 7/10/22 1 13 i .
5 el T p PatientID: FOREIGN KEY
5 a2 1 15 5 1ID: FOREIGN KEY
10 7/13/22 1 17 10

Primary Key: AppointmentID

Foreign Key:

“PatientID” to Key “PersonID” in Patient;
“IID” to Primary Key “IID” in Invoice.
SQL Approved Data Types: INT, DATE

16

Allergy_Name Allergy

Bees Purpose: This table holds all possible allergies.
Chocolate Fields: Allergy Name
Elibrde Constraints:
Milk Allergy Name: PRIMARY KEY
N Primary Key: Allergy Name
uts N —
Peanutbutter Foreign Key: N/A
SQL Approved Data Types: VARCHAR
Peanuts
Penecilin
Pollin
Walnuts
PMID | CashAmount Cash
4B0 Purpose: This table holds all transactions made with
i igg payment method “cash.”
24 400 Fields: PMID, CashAmount
25 500 Constraints:
26 400 PMID: FOREIGN KEY;
g 288 CashAmount: NOT NULL.
= =5 Primary Key: N/A
30 600 Foreign Key:
“PMID” to Primary Key “PMID” in PaymentMethod.
SQL Approved Data Types: INT
PMID CheckAmount |CheckDate CheckRecipient | Check
4 400 Sitties | D Chiot Purpose: This table holds all transactions made with
5 600 6/14/22 Dr. Choo 173 29
payment method “check.
6 900 6/14/22 Dr. Choo . .
7 00 EFAE3 [Dr Bhoo Fields: PMID, CheckAmount, CheckDate, CheckRecipient
18 600 6/14/22 Dr. Choo Constraints:
19 900 6/14/22 Dr. Choo PMID: FOREIGN KEY
n W Sumuow poignKey
r. 00 13 2 b [13 99 3
= e EFababr Choo PMID” to Primary Key “PMID” in PaymentMethod

SQL Approved Data Types: INT, DATE, VARCHAR

CardNumber PMID cw |ExpireDate | CardHolderName
4005284479136381 7 111 1/1/2030 |Noah Perkins
4005273783740962 8 110 1/2/2030 Sidney Choo
4005263088345543 9 109 1/3/2030 Cynthia Szeto
4005252392950124 10 108 1/4/2030 Amber Green
4005241697554705 1 107 1/5/2030 Shobitha Sanjeevan
4005231002159286 12 106 1/6/2030 Ally Zwelling
4005220306763867 13 105 1/7/2030 Jane Doe
4005209611368448 14 104 1/8/2030 Lex Fridman
4005198915973029 15 103 1/9/2030 Ray Dalio
4005198915973030 16 102 1/10/2030 Olivia Naberie
PersoniD Relation
1 Husband
2 Sister
3 Brother
4 Father
5 Brother
6 Wife
7 Mother
8 Sister
9 Cousin
10 Friend
PersoniD Employee_Type Salary Degree College BadgeNum ‘
1 Medical Employee 80000 PhD Harvard 1
2 Medical Employee 120000 PhD osu 2
3 Medical Employee 90000 PhD Yale 3
4 Medical Employee 80000 PhD osu 4
5 Medical Employee 120000 PhD Michigan 5
6 Medical Employee 90000 PhD Harvard 6
7 Medical Employee 80000 PhD osu T
8 Medical Employee 120000 PhD Yale 8
9 Medical Employee 90000 PhD osu 9
10 Medical Employee 80000 PhD Michigan 10
11 Non-medical employee 65000 BSE Harvard 1"
12 Non-medical employee 70000 BSE osu 12
13 Non-medical employee 80000 BSE Yale 13
14 Non-medical employee 65000 BSE osu 14
15 Non-medical employee 70000 BSE Michigan 15
16 Non-medical employee 80000 BSE Harvard 16
17 Non-medical employee 65000 BSE osu 17
18 Non-medical employee 70000 BSE Yale 18
19 Non-medical employee 80000 BSE osu 19
20 Non-medical employee 65000 BSE Michigan 20
0OID FavMediaName FavMediaType |FavFood HireDate
1 Interstellar Movie Pasta 1/1/2018
1 Gasoline Song Pizza 2/9/2018
1 Dawn FM Album Calzone 6/8/2018
1 Twin Peaks Show Gyro 2/27/2018
1 Blade Runner Movie Chicken 1/25/2019
2 Blade Runner 2049 Movie Beef 1/25/2019
2 Here Comes The Sun Song Shrimp 5/16/2019
2 Graduation Album Salad 10/9/2018
2 808s and Heartbreak Album Dumplings 3/7/2019
2 You Show Spring Rolls 10/10/2018
2 Better Call Saul Show Ramen 3/7/2019
2 Walkin Song Wings 1/8/2019
3 Cave World Album Breadsticks 9/5/2018
4 The Matrix Movie Bacon 5/10/2019
5 Breaking Bad Show Sandwich 9/6/2019
6 Touch The Sky Song Popcorn 11/712018
7 Electric Feel Song Burger 5/10/2019
8 Stranger Things Show Steak 9/18/2019
9 Inception Movie Fried Chicken 8/17/2019
10 John Wick Movie Soup 11/28/2018

17

CreditCard

Purpose: This table holds all credit card records from
patients.

Fields: CardNumber, PMID, CVV, ExpireDate,
CardHolderName

Constraints:

PMID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PMID” to Primary Key “PMID” in PaymentMethod
SQL Approved Data Types: INT, DATE, VARCHAR

EmergencyContact
Purpose: This table holds all emergency contacts of

corresponding patients.

Fields: PersonID, Relation

Constraints:

PersonID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PersonID” to Primary Key “ID” in Person
SQL Approved Data Types: INT, VARCHAR

Employee
Purpose: This table holds all employees.

Fields: PersonID, Employee Type, Salary, Degree,
College, BadgeNum, OID

Constraints:

PersonID: FOREIGN KEY

OID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PersonID” to Primary Key “ID” in Person;

“OID” to Primary Key “OID” in Office.

SQL Approved Data Types: INT, VARCHAR

(Table split into two halves for readability.)

18

Start_Time EmployeelD AppointmentID | Employee-Appointment-Join

Purpose: This table joins Employee and Appointment.

122; 11 ; Fields: Start Time, EmployeelD, AppointmentID
16:22 12 3 Constraints:
' EmployeelD: FOREIGN KEY
L 4 4 AppointmentID: FOREIGN KEY
16:42 14 5 Primary Key: N/A
16:52 15 6 Foreign Key:
17:22 5 7 “EmployeelD” to Key “PersonID” in Employee;
17:20 6 8 “AppointmentID” to Primary Key “AppointmentID” in
17:02 7 9 Appointment.
19:12 9 10 SQL Approved Data Types: TIME, INT
IID Datelssued Amount PID ProfessionalsID | InVOice
; Zﬁ;ﬁii Zﬁﬁ ; 1 Purpose: This table holds all invoices.
3 716122 700 3 2 Fields: IID, Datelssued, Amount, PID, ProfessionalsID
4 717122 800 4 3 Constraints:
5 7/8/22 900 5 4
6 719122 1000 6 2 [ID: PRIMARY KEY
T ; ; PID: FOREIGN KEY
o 7112/22 1300 10 10 ProfessionalsID: FOREIGN KEY
10 7/13/22 1400 9 9 Primary Key: IID
Foreign Key:
“PID” to Primary Key “PID” in Payment;
“ProfessionalsID” to “PersonID” in MedicalProfessional.
SQL Approved Data Types: INT, DATE
AmountCovered| 1D IPID | Invoice-AcceptedInsurance-Join
50 1 1 Purpose: This table joins invoice and accepted insurance.
50 2 2 Fields: AmountCovered, IID, IPID
Constraints:
.)) IID: FOREIGN KEY
100 4 4 IPID: FOREIGN KEY
65 5 5 Primary Key: N/A
65 6 6 Foreign Key:
20 7 7 “IID” to Primary Key “IID” in Invoice;
100 8 8 “IPID” to Primary Key “IPID” in AcceptedInsurance.
50 9 1 SQL Approved Data Types: INT
100 10 10

LicenselD LicenseName

1 BackTeeth
2 FrontTeeth
3 UpperTeeth
4 LowerTeeth
5 XRay

6 Cleaning

7 Fluoride

8 Brushing

9 Calling

10 Conversation

Condition_Name

AIDS

CoVvID

Cancer

Chlamydia

Cystic Vibrosis

Diabetes

Ginigivitis

HIV

Ocular Deteriation

Pregnant

PersonID | Training Position
1 Cleaning Hygenist
2 Cleaning Hygenist
3 Cleaning Hygenist
4 Cleaning Hygenist
5 Sickness Check Dentist
6 Sickness Check Dentist
7 Sickness Check Dentist
8 Sickness Check Dentist
9 Sickness Check Dentist
10 Cleaning Hygenist

19

License

Purpose: This table holds all dental licenses.
Fields: LicenselD, LicenseName

Constraints:

License: PRIMARY KEY

Primary Key: LicenseID

Foreign Key: N/A

SQL Approved Data Types: INT, VARCHAR

MedicalCondition

Purpose: This table holds all medical conditions.
Fields: Condition_Name

Constraints:

Condition_Name: PRIMARY KEY

Primary Key: Condition Name

Foreign Key: N/A

SQL Approved Data Types: VARCHAR

MedicalEmployee

Purpose: This table holds all medical employees.
Fields: PersonID, Training, Position
Constraints:

PersonIlD: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PersonID” to Key “PersonID” in Employee
SQL Approved Data Types: INT, VARCHAR

20

Issue_date PersonlD LicenselD | MedicalEmployee-License-Join
06/14/2000 1 1 Purpose: This table joins medical employee and license.
06/15/2000 2 1 Fields: Issue_date, PersonID, LicenseID
s il > : l():e?rlslzgl?)il'l;s(:)REIGN KEY
06/17/2000 4 * LicenseID: FOREIGN KEY
06/18/2000 5 4 primary Key: N/A
06/19/2000 6 6 Foreign Key: “PersonID” to Key “PersonID” in
06/20/2000 7 7 MedicalEmployee;
06/21/2000 8 i “LicenselD” to Primary Key “LicenselD” in License.
O622/2000 9 8 SQL Approved Data Types: DATE, INT
06/23/2000 10 10

Medication_Name Medication

Purpose: This table holds all medications provided.

Abilify Fields: Medication Name

Ambien Constraints:

Cipro Medication_Name: PRIMARY KEY

Flaqyl Primary Key: Medication Name
9y Foreign Key: N/A

Lexapro SQL Approved Data Types: VARCHAR

Mobic

Neurontin

Prozac

Teemocil

Tramadol

PersonID

| Type

11 Receptionist
12 Receptionist
13 Receptionist
14 Receptionist
15 Receptionist
16 Receptionist
17 Receptionist
18 Receptionist
19 Receptionist
20 Receptionist

NonMedicalEmployee

Purpose: This table holds all non-medical employees.
Fields: PersonID, Type

Constraints:

PersonID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PersonID” to Key “PersonID” in Employee

SQL Approved Data Types: INT, VARCHAR

21

oD OfficeName StreetAddress | Office
1/Red 1 N Street Purpose: This table holds all dental offices.
2 Red 2 N Street Fields: (?ID, OfficeName, StreetAddress
3 Apollo 3 N Street g;’g?gﬁ}'ﬁiRY KEY
4| Zoue 4N Street StreetAddress: FOREIGN KEY
5 Gob 5 N Street Primary Key: OID
6 Yankee 6 N Street Foreign Key:
7 Activity 7 N Street “StreetAddress” to Primary Key “StreetAddress” in
8 Omeeega 8 N Street Address
9| Staff DN Street SQL Approved Data Types: INT, VARCHAR
10 Things 10 N Street
Patient
Purpose: This table holds all patients.

e (it oo _[toer e Fields: PersonID, LastXRayDate, Gender, Race, Age,
3 owsm Agcan » HIPPASigned, EID, IPID, PreferredDay, PreferredTime
o R 5 Constraints:

I e @ PersonID: FOREIGN KEY
o ommr posteiri o EID: FOREIGN KEY
B Gl o i = IPID: FOREIGN KEY
Primary Key: N/A
H!F’PASLgned1 EID - IPID 1 ;r:nfi':diay Pr’efer’redT;rgem Foreign Key:
] : s i “PersonID” to Primary Key “ID” in Person;
| ; s = “EID” to Key “PersonID” in EmergencyContact;
i : - & “IPID” to Primary Key “IPID” in AcceptedInsurance.
| ‘ e — SQL Approved Data Types: INT, DATE, CHAR,
1 10 10 Friday 19:12 VARCHAR

(Table split into two halves for readability.)

PersonlD | Allergy Name | Patient-Allergy-Join
1] Peanutbutter Purpose: This table joins patient and corresponding

2 Peanuts . .

3 Nuts possible allergies.

4 Walnuts Fields: PersonID, Allergy Name
5 Pollin Constraints:

e e PatientID: FOREIGN KEY

3 Pansolh AID: FOREIGN KEY

14 Fluoride

15 Chocolate Primary Key: N/A

17 Milk Foreign Key:

“PatientID” to Key “PersonID” in Patient;
“AID” to Primary Key “Allergy Name” in Allergy.
SQL Approved Data Types: INT, VARCHAR

PersonID Condition_Name

Diabetes
CoviD
CoviD
CoVvID
5 COVID
12 Diabetes
13 Cancer

AW N =

14 Ginigivitis
15 Ginigivitis
17 Diabetes

Brand PersonlD

| Medication_Name

ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment
ArrestedDevelopment

- o b~ N

12
13
14
15
17

Teemocil
Abilify
Ambien
Prozac
Flagyl
Lexapro
Tramadol
Neurontin
Mobic
Cipro

22

Patient-MedicalCondition-Join

Purpose: This table joins patient and corresponding
possible medical conditions.

Fields: PersonID, Condition_Name

Constraints:

PatientID: FOREIGN KEY

Condition_Name: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PatientID” to Key “PersonID” in Patient;
“Condition_Name” to Primary Key “Condition_Name” in
MedicalCondition.

SQL Approved Data Types: INT, VARCHAR

Patient-Medication-Join

Purpose: This table joins Patient and corresponding
medications taken.

Fields: Brand, PersonID, Medication Name
Constraints:

PatientID: FOREIGN KEY

Medication Name: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“PatientID” to Key “PersonID” in Patient;
“Medication_Name” to Primary Key “Medication Name”
in Medication.

SQL Approved Data Types: VARCHAR, INT

PID DatePaid PayeelD
1 6/14/22 1
2 6/15/22 3
3 6/16/22 5
4 6/17/22 7
5 6/18/22 9
6 6/19/22 1
7 6/20/22 1
8 6/21/22 3
9 6/22/22 17
10 6/23/22 20
11 6/24/22 1
12 6/25/22 3
13 6/26/22 5
14 6/27/22 7
15 6/28/22 9
16 6/29/22 1
17 6/30/22 1
18 71122 3
19 712122 17
20 713122 20
21 714122 1
22 715122 3
23 716122 5
24 718122 7
25 718122 9
26 719122 1
27 712122 1
28 712122 3
29 712122 17
30 7113122 20
Payment_Type |PMID PID
Cash 1 1
Cash 2 2
Cash 3 3
Check 4 4
Check 5 5
Check 6 6
Credit Card 7 7
Credit Card 8 8
Credit Card 9 9
Credit Card 10 10

23

Payment
Purpose: This table holds all payments made.

Fields: PID, DatePaid, PayeeID
Constraints:

PID: PRIMARY KEY

PayeelD: FOREIGN KEY

Primary Key: PID

Foreign Key:

“PayeelD” to Key “PersonID” in Patient
SQL Approved Data Types: INT, DATE

PaymentMethod

Purpose: This table holds all possible payment methods.
Fields: Payment Type, PMID, PID

Constraints:

PMID: PRIMARY KEY

PID: FOREIGN KEY

Primary Key: PMID

Foreign Key:

“PID” to Primary Key “PID” in Payment

SQL Approved Data Types: VARCHAR, INT

24

ID Person_Type Fname Lname Person
11 Patiort it Polis Purpose: This table holds all people that have relationship
2 Emergency Contact Omega Batch .
= Aiiha Stop with the dental office.
4 Emergency Contact Zach Tangeman Fields: ID, Person_Type, Fnarne, Lname
5 Patient Zach Hopkins Constraints:
6 Emergency Contact Sidney Choo .
7 Patient Cynthia Szeto ID PRIMARY KEY
8 Emergency Contact Amber Green Prlmary Key: ID
9 Patient Shobitha Sanjeevan FOI'eigIl Key: N/A
10 Emergency Contact Ally Zwelling SQL Approved Data Types: INT. VARCHAR
11 Patient John Smith ’
12 Employee Jane Doe
13 Patient John Doe
14 Employee Jane Smith
15 Patient Abby Skye
16 Employee Olivia Naberie
17 Patient Scott Adams
18 Employee Lex Fridman
19 Employee Ray Dalio
20 Patient Elon Musk
Address_Type |PersoniD StreetAddress | Person-Address-Join
House 1 8080 NothingLn Purpose: This table joins person and address.
—— 2 9 N Street léield:: z’?d;iress_Type, PersonlID, StreetAddress
onstraints:
H 3 3 N Street
H°use 1N Street PersonID: FOREIGN KEY
ks o StreetAddress: FOREIGN KEY
House 5 5 N Street Primary Key: N/A
House 6 8080 Nothing Ln Foreign Key:
Apartment 7 6N Street “PersonID” to Primary Key “ID” in Person;
Houze 8 7 N Street “StreetAddress” to Primary Key “StreetAddress” in
House 9 7 N Street Address
Agptiment 1019 N Strast SQL Approved Data Types: VARCHAR, INT
ProcedurelD ProcedurePerformed Procedure
1 All Teeth Cleaning gurp?sef; This table holds all provided procedures in the
ental ofttice.
2 Front Tooth Pull .
Fields: ProcedurelD, ProcedurePerformed
3 Molar Tooth Pull Constraints:
4 Wisdom Tooth Pull ProcedurelD: PRIMARY KEY
5 Crown Primary Key: ProcedureID
6 Cap Foreign Key: N/A
7| Briicge SQL Approved Data Types: INT, VARCHAR
8 Retainer
9 Teeth Alignment
10 Tooth Picking

AmountPaid PerUnitCharge |ProcedurelD IPID |
15 25 1 1
15 50 2 2
15 100 3 3
15 150 4 4
15 200 5 5
15 25 1 6
15 500 7 7
15 400 8 8
15 260 9 1
15 195 10 10
Procedure_Amount | ProcedurelD AppointmentID ‘
500 10 1
500 5 1
600 10 2
600 6 2
700 10 3
700 6 3
700 3
100 10 6
200 10 7
100 10 8
ProcedurelD IID

(o) TN« T4, RN

10
10
10
10
10
10

W o N = 1N =W

s
o

25

Procedure-Accepted-Insurance-Join

Purpose: This table joins procedure and corresponding
accepted insurances.

Fields: AmountPaid, PerUnitCharge, ProcedurelD, IPID
Constraints:

ProcedurelD: FOREIGN KEY

IPID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“ProcedurelD” to Primary Key “ProcedurelD” in
Procedure;

“IPID” to Primary Key “IPID” in AcceptedInsurance.

SQL Approved Data Types: INT

Procedure-Appointment-Join

Purpose: This table joins Procedure and corresponding
appointment.

Fields: Procedure_ Amount, ProcedurelD, AppointmentID
Constraints:

ProcedurelD: FOREIGN KEY

AppointmentID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“ProcedurelD” to Primary Key “ProcedureID” in
Procedure;

“AppointmentID” to Primary Key “AppointmentID” in
Appointment.

SQL Approved Data Types: INT

Procedure-Invoice-Join

Purpose: This table joins procedure and corresponding
invoice.

Fields: ProcedurelD, 11D

Constraints:

ProcedurelD: FOREIGN KEY

1ID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“ProcedurelD” to Primary Key “ProcedureID” in
Procedure;

“IID” to Primary Key “IID” in Invoice.

SQL Approved Data Types: INT

Start_Time
13:01
13:01
13:02
13:01
13:03
13:04
13:05
13:06
13:07
14:22

ProcedurelD

b [N SR S N U S O S o [SR S I S 3

ProfessionalsID

O 00 N O g bk wWN =

—
o

26

Procedure-MedicalProfessional-Join

Purpose: This table joins procedure and related medical
professionals.

Fields: Start Time, ProcedurelD, ProfessionalsID
Constraints:

ProcedurelD: FOREIGN KEY

ProfessionalsID: FOREIGN KEY

Primary Key: N/A

Foreign Key:

“ProcedurelD” to Primary Key “ProcedurelD” in
Procedure;

“ProfessionalsID” to Key “PersonID” in
MedicalEmployee.
SQL Approved Data Types: TIME, INT

27
Catalog of SQL Queries

Simple Query 1: Create a list of patients and the medications they currently take.

CREATE VIEW SQ1P1
AS SELECT *
FROM Person, Patient
WHERE Person.ID = Patient.PersonlD;
CREATE VIEW SQ1P2
AS SELECT *

FROM SQIP1, Patient Medication Join

WHERE SQI1P1.personid = Patient Medication Join.PersonID;
CREATE VIEW SQ1P3
AS SELECT Fname, Lname, SQ1P2.Medication Name, Brand

FROM SQI1P2 , Medication

WHERE SQIP2.Medication Name = Medication.Medication Name;

i Fname Lname Medication_Name Brand

Abilify

Skye

Simple Query 2: Display patient information for patients who currently have Delta Dental
insurance policy.

CREATE VIEW SQ2P1

AS SELECT IPID, Name
FROM AcceptedInsurance;

CREATE VIEW SQ2P2

AS SELECT *
FROM Patient, SQ2P1, Person
WHERE Patient.IPID = SQ2P1.IPID AND SQ2P1.Name = "Delta";

i Pers... LastXR... Gender Race Age HIPPAS... EID IPID IPID:1 Name ID Person... Fname Lname
7113122 v South Afr 56 1 10 10 10 Delta 1 Patient Noah Perkins
20 7113122 M South Afr 56 10 10 0 Delta 2 Emergen Omega Batch
1 De S
2 1 Sot 10 Zact
20 07/13/22 M South Afr. 56 1 10 10 10 Delta
o 1 10 e
20 07/13/22 M South Afr. 56 1 10 10 10 Delta 7 Patient Cynthia Szeto
Si 1 10 e T T
07113122 M South Afr 56 1 10 10 10 Delta 9 Patient Shobitha Sanjeevan
) 1 M S 1 10 1 o 1 Ally
13 M 1 1 1 De 1
2 1 M S 1 10 1 ol 12 ce
1 S 1 1 10 1 [1 Do
M South Afr 56 1 10 10 10 Delta 14 Employee
1 South 1 10 1 L 1 e
M S A 1 16 | I3 erie
1 S : 1 t
1 Detl 1
1 S 1 1 Da
1 Del 2 M
M S A 1 10 De

Simple Query 3: Generate a list of procedures and dates of service performed by doctor Smilow.

CREATE VIEW SQ3P1
AS SELECT *
FROM Appointment, Procedure Appointment Join
WHERE Appointment.AppointmentID = Procedure_Appointment_Join.AppointmentID;
CREATE VIEW SQ3P2
AS SELECT *
FROM Procedure, SQ3P1
WHERE SQ3P1.procedureid = Procedure.procedureid;
CREATE VIEW SQ3P3
AS SELECT *
FROM SQ3P2, Procedure_MedicalEmployee Join
WHERE SQ3P2.ProcedurelD = Procedure MedicalEmployee Join.ProcedurelD;
CREATE VIEW SQ3P4
AS SELECT *
FROM SQ3P3, MedicalEmployee
WHERE SQ3P3.ProfessionalsID = MedicalEmployee.PersonlD;
CREATE VIEW SQ3P5

AS SELECT *
FROM SQ3P4, Person
WHERE SQ3P4.personid = Person.ID;

CREATE VIEW SQ3P6
AS SELECT ProcedurePreformed, Date
FROM SQ3P5
WHERE Lname = "Smilow";

ProcedurePreformed Date

Simple Query 4: Print out a list of past due invoices with patient contact information. Past due is
defined as over 30 days old with a balance over $10.

CREATE VIEW SQ4P1
AS SELECT *
FROM Invoice
WHERE Datelssued > '2022/06/30' AND Amount >

i 1D Datelssued Amount PID ProfessionalsiD

Simple Query 5: Find the patients who brought the most revenue in the past year.

CREATE VIEW SQ5P1
AS SELECT *

FROM Person, Patient
WHERE Patient.PersonlD = Person.ID;

CREATE VIEW SQ5P2
AS SELECT *
FROM SQS5PI1, Appointment
WHERE SQ5P1.personid = Appointment.patientid;
CREATE VIEW SQ5P3
AS SELECT *

FROM SQ5P2, Invoice
WHERE SQS5P2.1ID = Invoice.IID;
CREATE VIEW SQ5P4
AS SELECT ID, Fname, Lname, Datelssued, Amount
FROM SQ5P3
WHERE Datelssued BETWEEN '2021/01/01' AND '2021/12/31";

i D Fname Lhname

Simple Query 6: Create a list of doctors who performed less than 5 procedures this year.

CREATE VIEW SQ6P1
AS SELECT *
FROM Person, MedicalEmployee
WHERE MedicalEmployee.PersonlD = Person.ID AND MedicalEmployee.position =
'Dentist';
CREATE VIEW SQ6P2
AS SELECT *
FROM SQ6P1, Procedure MedicalEmployee Join
WHERE SQ6P1.PersonlD = Procedure MedicalEmployee Join.professionalsid;
CREATE VIEW SQ6P3
AS SELECT *, COUNT(DISTINCT Procedure.procedureid) as Number
FROM SQ6P2, Procedure
WHERE SQ6P2.procedureid = Procedure.procedureid,
CREATE VIEW SQ6P4
AS SELECT Fname, Lname
FROM SQ6P3
GROUP BY SQ6P3.procedureld
HAVING Number < 5;

31

Fname Lname

Simple Query 7: Find the highest paying procedures, procedure price, and the total number of
those procedures performed.

CREATE VIEW SQ7P1
AS SELECT *
FROM Appointment, Procedure_Appointment_Join
WHERE Appointment.appointmentid = Procedure_Appointment Join.appointmentid;
CREATE VIEW SQ7P2
AS SELECT *
FROM Procedure, SQ7P1
WHERE SQ7P1.ProcedurelD = Procedure.ProcedurelD;
CREATE VIEW SQ7P3
AS SELECT *
FROM SQ7P2, Invoice
WHERE SQ7P2.1ID = Invoice.IID;
CREATE VIEW SQ7P4
AS SELECT ProcedurelD, ProcedurePreformed, MA X(Amount)
FROM SQ7P3;

ProcedurelD ProcedurePreformed MAX{Amount)

1200

Simple Query 8: Create a list of all payment types accepted, the number of times each of them
was used, and the total amount charged to that type of payment.

CREATE VIEW SQS8P1
AS SELECT *
FROM Payment, PaymentMethod
WHERE Payment.PID = PaymentMethod.PID;

CREATE VIEW SQ8P2
AS SELECT *
FROM SQS8PI, Invoice
WHERE SQ8P1.PID = Invoice.PID;

CREATE VIEW SQ8P3

AS SELECT Payment_type, Count(distinct PID), Sum(Amount)
FROM SQ8P2;

Payment_Type Count{distinct PID) Sum(Amount)

jak)
wn
()
2

Simple Query 9: Find the name of the most popular insurance plan currently used by the patients.

CREATE VIEW SQ9P1
AS SELECT *
FROM Patient, AcceptedInsurance
WHERE Patient.IPID = AcceptedInsurance.IPID;
CREATE VIEW SQ9P2
AS SELECT SQ9P1.Name, COUNT(distinct SQ9P1.IPID) as Number
FROM SQ9PI;
CREATE VIEW SQ9P3
AS SELECT SQ9P2.Name, COUNT(Number)
FROM SQ9P2;

Name COUNT(Number)

Extra Query 1: Average payment of uncanceled appointments.

CREATE VIEW EXQ1
AS SELECT AVG(Amount) FROM (SELECT * FROM (SELECT * FROM Patient,

Appointment), Invoice)
WHERE Cancelled = FALSE;

AVG(Amount)

g50

33
Extra Query 2: Patient Count of Type of Allergies.

CREATE VIEW EXQ2
AS SELECT Allergy.allergy name, Count(Distinct PersonlD)
FROM (SELECT * FROM Patient, Patient Allergy Join

WHERE Patient.PersonlD = Patient_Allergy Join.PersonID), Allergy
WHERE Allergy.allergy name = Allergy.allergy name;

Allergy_Name Count(Distinct PersonlD)
Peanuts
Extra Query 3: Total paid in the year 2021.

CREATE VIEW EXQ3
AS SELECT SUM(Amount) FROM Invoice WHERE Datelssued BETWEEN '2022/01/01"

AND '2022/12/31";

SUM{Amount)

8100

34

Insert and Delete SQL Examples
Inserting new doctor Smilow.

INSERT into Person VALUES (21, 'Employee', 'John', 'Smilow');
INSERT into Employee VALUES (21, 'Medical Employee', , 'PhD', 'Harvard', 1,
INSERT into MedicalEmployee VALUES (21, 'Everything', 'Doctor');

INSERT into Procedure_MedicalEmployee Join VALUES ('16:22', 6, 21);

Deleting the person with ID = 3, Payment where PID = 4, and the medication where
Medication Name = ‘Ambien’ while cascade deleting all subclasses and join tables.

DELETE FROM Person WHERE ID = 3;
DELETE FROM Payment WHERE PID = 4;
DELETE FROM Medication WHERE Medication_Name = 'Ambien’;

Two Indexes
Make a cluster index for the condition name on MedicalCondition.

CREATE UNIQUE INDEX conditionName
ON MedicalCondition (Condition Name);

Make a cluster index for the id on all persons

CREATE UNIQUE INDEX personldSearch

ON Person (ID);

35

Two Views

Gets the combined columns of Person, MedicalEmployee, Procedure MedicalEmployee Join,
and then counts the distinct procedure ids to find the number of procedures that have been
performed.

CREATE VIEW SQ6P1
AS SELECT *
FROM Person, MedicalEmployee
WHERE MedicalEmployee.PersonlD = Person.ID AND MedicalEmployee.position =
'Dentist';
CREATE VIEW SQ6P2
AS SELECT *

FROM SQ6P1, Procedure MedicalEmployee Join

WHERE SQ6P1.PersonlD = ProcedureMedicalEmployee Join.professionalsid;
CREATE VIEW SQ6P3
AS SELECT *, COUNT(DISTINCT Procedure.procedureid) as Number

FROM SQ6P2, Procedure

WHERE SQ6P2.procedureid = Procedure.procedureid;

Gets the number of people who are using insurance plans

CREATE VIEW SQ9P1
AS SELECT *
FROM Patient, AcceptedInsurance
WHERE Patient.IPID = AcceptedInsurance.IPID;

CREATE VIEW SQ9P2
AS SELECT SQ9P1.Name, COUNT(distinct SQ9P1.IPID) as Number
FROM SQO9PI;

Name Number

36

Two Transactions

Transaction I

Purpose: Adding a new appointment for a new patient.

It is important to execute these in a single unit because this transaction involves multiple tables.
In this case, an appointment must relate to a patient. We have to add all corresponding records to

make sure every related table has an up-to-date data stored.
BEGIN TRANSACTION;

TN T OR ROLLBACK INTO Person values
'"Pichkar');
INSERT OR ROLLBACK INTO Patient VALUES
'M', 'White', 23, 1, 9, 1);

OR ROLLBACK INTO Appointment VALUES (11,

COMMIT;

& SQlite = »
BEGIN TRANSACTION

INSERT OR ROLLBACK INTO VALUES (22

IN

Transaction 11

Purpose: Adding a new allergy to an existing patient.

It is important to execute these in a single unit because this transaction involves multiple tables.
In this case, an allergy must relate to an existing patient. We have to add all corresponding
records to make sure every related table has an up-to-date data stored.
BEGIN TRANSACTION;

ISERT OR ROLLBACK INTO Allergy VALUES ('Pollen');

ROLLBACK INTO Patient Allergy Join VALUES (22, 'Pollen');

COMMIT;

SQlite & »
BEGIN TRANSACTION

INSERT OR ROLLBACK INTO Allergy VALUES

INSERT OR ROLLBACK INT

37
Section 3 - Team Reports and Graded Checkpoint Documents

Team Member Contributions

Aaron Post worked on the (E)ERD, relational schema and diagram, introduction, documentation,
and formatted the final report document. Noah Perkins did the majority of our SQL code, worked
on the relational schema, populated the database, made the create, insert, and delete queries, and
helped work on other various aspects earlier on in the project. Keyang Zhang worked on the
(E)ERD, table descriptions, and transactions. Overall, we believe the three of us contributed our
respective fair shares of work. While Saeed Alneyadi did complete the relational algebra for the
second checkpoint, he did not maintain those queries to work with the updated schema and ERD
between checkpoints. He was also very inactive for almost all of the semester and very hard to
reach.

Project Reflection

This process was very challenging. For many of us, this was our first big semester-long group
project. The most important advice we would have for future groups is to really focus on getting
each checkpoint right the first time; the more mistakes you make, the more challenging each
further checkpoint will be. The vertical development of a relational database means that mistakes
will have to be corrected in many different areas. Even for our final report, we were still having
to go back and make changes to the ERD, then the schema, then the schema diagram, then the
relational algebra, and so on. This process can easily become a headache, so work really hard, in
the beginning, to make things easier later on. Also, for those who are taking this course over the
summer, don’t underestimate the importance of creating a schedule for working together. Many
of us still had obligations such as jobs or other classes which we had to plan around.

Feedback and Revision Process
CPO1 Feedback:
- ERD needs a bit more work.
- Consider using appropriate generalizations/specializations.
- Remove duplication of atteributes. Identify all derived attributes.
- Remove job type-based Union. Entities without attributes should not be present (empty
sets).
- Make sure that the invoice (billing) is connected with payments, insurance, procedures.
Revisions Made:
- Remade entire ERD
- Removed Job-Based Union, but added other generalizations.
- Removed duplicate attributes.
- “Fixed Payments” though we completely changed the payment system later on.

38

CPO02 Feedback:

Payment is missing relationships and does not handle payment methods.

Insurance companies are not considered.

Missing cardinality, and some relationships have incorrect cardinality.

Relational schema was missing many Foreign Keys.

Queries had many issues, most of which we should have caught by checking back over
our work.

Revisions Made:

Overhauled the payment system, adding necessary relationships and a new entity to
handle the various payment methods.

Overhauled the Insurance system, adding necessary relationships and the new Insurance
Company entity.

Added missing cardinality and fixed incorrect cardinality.

“Fixed queries,” but these still had to be fixed at a later date because they were still not
entirely correct.

CPO03 Feedback:

Patient, Employee and Emergency contact can be the same person.

It is better to assign Emergency Contacts via relationship of Person with itself (self-join).
Use 'type' attributes for Generaliztion/specialization cases.

Use meaningful names for PK instead of simple 'ID'.

Need attributes to describe M:N relationships such as Patient:Allergy such as severety,
date_occured, etc.

Relation between patient and an attribute of Credit Card?

Refer back to CP02 feedback on PAYMENT and INVOICE entities and relationship
between them.

Show your final schema using sentence notation as learned in class.

Many queries still have basic syntax errors and don’t work properly. Cascading needs to
added. Generally, these queries still need many changes to function correctly.

Revisions Made:

Changed specialization of Patient, Employee, and Emergency Contact to overlap.
Added necessary “type” attributes for specialization.

Added self-joins.

Changed many Primary Key names.

Added many fitting attributes for M:N relationships.

Removed unnecessary relationship between patient and credit card

Fixed payment and invoice relationship

Overhauled relational schema to be in sentence notation, as well as adding a relational
diagram.

Queries were overhauled to work correctly, and necessary cascading was implemented.

Project Checkpoints
All previous CP documents are included—see “CP01.PDF” “CP02.PDF” “CP03.PDF”

Resources:
Daniel Post (Aaron’s father who is an admin at a hospital)

“Best Dental Software with Customer Database.” GetApp,

www.getapp.com/healthcare-pharmaceuticals-software/dental/f/customer-database.

Accessed 31 May 2022.
Uzialko, Adam. “What Is Data Management?” Business.Com, 16 Feb. 2022,

www.business.com/articles/what-is-data-management.

39

Part II - The SQL Database

40

Testing Queries and SQL
To test our queries and database design, we used SQLLite at https://sqliteonline.com/.
All necessary files to use our database are included in this submission.

